Switching Hidden Markov Models for Learning of Motion Patterns in Videos

نویسندگان

  • Matthias Höffken
  • Daniel Oberhoff
  • Marina Kolesnik
چکیده

Building on the current understanding of neural architecture of the visual cortex, we present a graphical model for learning and classification of motion patterns in videos. The model is composed of an arbitrary amount of Hidden Markov Models (HMMs) with shared Gaussian mixture models. The novel extension of our model is the use of additional Markov chain, serving as a switch for indicating the currently active HMM. We therefore call the model a Switching Hidden Markov Model (SHMM). SHMM learns from input optical flow in an unsupervised fashion. Functionality of the model is tested with artificially simulated time sequences. Tests with real videos show that the model is capable of learning and recognition of motion activities of single individuals, and for classification of motion patterns exhibited by groups of people. Classification rates of about 75 percent for real videos are satisfactory taking into account a relative simplicity of the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density aware anomaly detection in crowded scenes

Coherent nature of crowd movement allows representing the crowd motion using sparse features. However, surveillance videos recorded at different periods of time are likely to have different crowd densities and motion characteristics. These varying scene properties necessitate use of different models for an effective representation of behaviour at different periods. In this study, a density awar...

متن کامل

مدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان

Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...

متن کامل

Language-Motivated Approaches to Action Recognition

We present language-motivated approaches to detecting, localizing and classifying activities and gestures in videos. In order to obtain statistical insight into the underlying patterns of motions in activities, we develop a dynamic, hierarchical Bayesian model which connects low-level visual features in videos with poses, motion patterns and classes of activities. This process is somewhat analo...

متن کامل

Asymmetric Effects of Monetary Policy and Business Cycles in Iran using Markov-switching Models

This paper investigates the asymmetric effects of monetary policy on economic growth over business cycles in Iran. Estimating the models using the Hamilton (1989) Markov-switching model and by employing the data for 1960-2012, the results well identify two regimes characterized as expansion and recession. Moreover, the results show that an expansionary monetary policy has a positive and statist...

متن کامل

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009